

Page | 1

MySQL Benchmark - a Telecom Case Study

Preface
This benchmark was part of feasibility study for a Telecom user. This was one of my most significant tasks during my last 6 months at Sun Software Practice, and through it gained a lot of useful knowledge about MySQL. I wish here to show my special appreciation to my colleagues. Eric Li was technical account manager of the system team. He took care of platform issues and brought a lot of creativity to the project. Kajiyama-san is the MySQL evangelist for the Asian-Pacific area, and devoted ample time to addressing our special needs. He introduced some critical new features to the project and helped us solve many tough issues in a professional and timely manner.
Initiatives
The User is facing a vigorous challenge from competitors and subsequently pressure from stockholders, expressing a need to squeeze more margin from a market which is becoming increasingly barren. The User hoped MySQL would bring them benefits such as:

· Cost Savings
The high cost of the proprietary database has been a sore point since day one: It has continuously eroded operating margins. The User sharply felt a need to find some way out from this constraint, in order to free up cash for promising new IT development projects.
· Open Source Model Adoption
There have been many innovations from the Open Source community. The User hopes that by using MySQL they can take advantage of Open Source innovation and also break the lock-in from the legacy databases. In short, Open Source has matured, and come to signal the promise of increased competitiveness.

· The Special Case of CRD (Call Detail Records) Cost Scaling
CDR databases are huge. Under our current legacy database pricing regimen, only 3 months of data can be stored. This is a limiting factor, which is also about to meet the burden of upcoming new government regulations which will require telecoms to keep 6 months of call details online. MySQL imposes no scaled costs on database size. Seeing also that the preponderance of CDR operations are read-only—relatively risk-free—and that those DML operations are performed in batch mode—not real-time critical—the case for a migration to MySQL is further strengthened. However CDR functionality, itself, is mission critical, and the User needs to consider both the cost savings and risks carefully before committing to migration.

Objectives
The proposes of these benchmark are as follows:

· To evaluate the traits and performance characteristics of MySQL

Before decide to use MySQL, the User needs to gain a clear understanding of MySQL, and know the pros and cons of MySQL. This information will help ensure that MySQL is used effectively.

· To ascertain specific applications to which MySQL may be especially pertinent
The user has a large applications profile, ranging from small task force scheduling to a mission critical BOSS system. We need to know which applications can reasonably use MySQL. Ideally, MySQL would not be limited to small and simple applications. Perhaps certain large systems with specific traits could be good candidates for migration. The further up the chain we can safely and effectively go, the greater the cost savings.

· To collect sizing information for capacity plan and architecture design

Every database has its own overhead costs and traits. Typically, the larger the data collections, the sooner one encounters these idiosyncratic characteristics. And these ultimately impact operating costs—for example in the area of backup and recovery. So we need to find out the traits of MySQL—coupled with varied storage engines—that could impact capacity plans and architecture designs for the target applications, some of which manage huge bases of information.

· To evaluate possible cost savings
In setting up a test database that is designed to parallel a production one, we can take pains to measure the total costs associated with using MySQL (servers, software license, storage, network etc.) with some precision, and compare these figures against those for the existing platform. In short, we can know with some certitude the possible cost savings from MySQL.

Testing Tasks
· Install, configure the environment

We configured two servers running Redhat ES 5 Linux and one storage server running Sun Open Storage, with 10 terabytes of capacity. The databases were configured using a master-slave replication architecture, detailed in the System Architecture section, below. To migrate data from the current CDR database, we created a virtual environment and installed Windows Server 2003 and SQLWays on the virtual machine. We used SQLWays to extract data from the current CDR database, and stored it as “flat” text files in a directory of the storage system; described in greater detail, below. This directory was network-shared with the Windows virtual environment and its host environment.

· Setup LVM snapshot for backing up the database

We set up LVM on the Redhat servers and created a logical volume for a MySQL data directory. We used LVM to create a snapshot against the data directory and dump the data from the snapshot to the backup sets directories. With this technique, the impact of backup operations on MySQL database availability would be decreased.

· Install/configure monitor system for collecting performance related data

In the beginning we used nmon to collect and show performance related information from the servers. Later, we used sar and ksar to simplify data collection and decrease overhead caused by nmon’s rather over-intensive data collection demon.

· Port data from the original database to plain text CSV files

We used SQLWays to extract data from the proprietary database into CSV files. These were kept in shared storage. We dumped 650 gigabytes; data only, no indexes. This is one month’s worth of PBX-generated records.

· Load data into MySQL and create indexes for each tables

We used the "load data infile..." command to load data from the CSV files into MySQL tables and then regenerated indexes identical to those from the current production database.

· Stress test with client applications to emulate DML from the daily operation

Most of the DML operations performed on the CDR database are in batch mode. In the current production system, the procedure for stocking tables from the PBX with data that is then eligible for query is:

1. load plain text data from the PBX into temporary tables. This step is basically identical to that described in the task described above; “Load data into MySQL…”.
2. Use stored procedures to dispatch call data from the temporary tables into permanent tables—one table for each day, by date that the call was put. After the data been loaded, the stored procedure reindexes these permanent tables.

In implemented the above procedure, most of the effort would focus on rewriting stored programs performing that 2nd step, and for introducing a processing step in which delimiters are inserted into raw PBX data; the MySQL load data command needs field delimiters, and data from the PBX currently lacks these. I wrote this program. It uses a property file that describes the delimitation columns.

· Stress test with a multi-threaded Java program that issues SQL statements to emulate concurrent database accesses
This was one of the most challenging parts of the benchmark; to generate SQL command executions that closely match those of a real production system. I looked for an off-the-shelf testing tool to do this—where SQL commands are rolling up data generated from several tables dynamically, based on the time period that the queries are covered—but couldn’t find one. I applied the following strategy to solve the issue:

1. With the help from the User’s CDR operation team, we logged the SQL commands that hit the production database for a period of time. We got a file containing more than 5112 SQL statements, reflecting database activity over a 10-hour period.

2. I wrote a Java program to perform the stress test. It reads the file mentioned above, and uses that information to emulate a query regimen against the MySQL database undergoing testing. This Java program logs system responses in a CSV file for later evaluation. The program also runs in multiple threads to simulate multiple concurrent connections.

· Fail-over test with the MySQL master-slave architecture

We implemented a slave server as a fail-over database. The User needs the assurance that there will be no data lag between the master and slave servers in the event of fail-over. This needs to be tested.
There are 3 options for triggering fail-over with MySQL: Virtual IP, load balancer, and multiple hosts with the JDBC connection string. Due to resource constraints, and given that the last option was the cheapest, I only tested the last one. All I had to do was fill in a multitude of host name in the database host name parameter of the stress testing program while running the test.

· Backup the database with an LVM snapshot and then recover the database from the backup sets—incremental backup/recovery also included

I configured a logical volume for the MySQL’s data directory, and used Zmanda Recovery Manager as a user interface for creating a backup from the snapshot which was configured in the 2nd task mentioned above. I also tested incremental backup with ZRM.

· Test the feasibility of point of failure recovery

[image: image1.png]SRS

.

I —
cont
H constonge
: o
consime
i
_| 5&%
cor2 e
oo
G e
me, e

For point of failure recovery, we need to recover the data from the full backup set stored in the backup target directory, and then apply the binary logs from the time after that full backup, up to the last records before the database crashed.

System Architecture

As the graph on the left shows, we had:

1. One Sun X4600 server as the master server; this server also acted as host server for the virtual machine running Windows Server 2003. SQLWays ran on the virtual environment for unloading tables from the existing database into CSV files. The server is equipped with 8 CPUs each with 4 cores, the server has 32 cores in total, and 32 gigabytes of RAM.
2. One Sun X4450, with two 4-core CPUs (8 cores in total), and 8 gigabytes of RAM. The server acted as the slave server.

3. One Sun 7410 storage server, equipped with 64 gigabytes of RAM. We configured the 20 terabytes of disk capacity into a mirror, making the effective available space 10 terabytes. This has 4 data channels, each with of 1 gigabit/second bandwidth. In the beginning only one channel was used. In later tests this was increased to 2 channels for tuning the performance of data loading. The storage is shared between the two abovementioned servers, and each one had their own partition.
The results

· Exporting data from original database to csv text files

SQLWays worked well, normally taking 1 hour and 45 minutes to export 22G bytes data (the data generated by the PBX in one day), I found that the job was I/O bound when exporting data with a single task thread: There should not be much room for improvement.
· Loading data into MySQL and creating table indexes
We started with MySQL 5.1.41, with a built-in Innodb storage engine. We tested both Innodb and MyISAM tables, we found that loading and indexing the 22G bytes data—generated by the PBX in a single day—into Innodb tables took more than 24 hours: A totally unacceptable arrangement! We tuned the “my.cnf” option file, increasing the innodb_buffer_pool_size and changing the flush method to O_DIRECT. This shorted the data processing task to 12 hours 32 minutes; still significantly slower than the current legacy database which only requires around 8 hours to load data into temporary tables and then dispatch them to the permanent tables. Most daunting of all was the thought that if the database crashed while loading such a large amount of data, the time needed to recover from that failure would be very long when restarting the database; much more than the time needed to load the data.

Thanks to the new Innodb storage engine support for plug-ins, we found a way out via a file-format plugin. We used Innodb 1.0.6. with the "Barracuda" plug-in. The following table shows the results. The time for loading the 22 gigabytes of data shrunk to 42 minutes, with an additional 1 hour and 47 minutes to create the indexes—a tremendous improvement! Furthermore, loading and creating indexes with MyISAM tables provided even more stability. It took 51 minutes to load data, and index generation needed less than 28 minutes. Further details on our database tuning exercise will be narrated in the next post of this blog.

Although the Innodb plugin performed much better than the legacy process, it’s still quite annoying to have to wait a such a long time in the recovery stage when restarting MySQL from a crashed state while loading large amounts of data. And as most of the DMLs in the CDR system are performed by a batch job, there is no need to incur data integrity overhead on transaction, so we decide to use MyISAM in the later tests.

[image: image2.png]s . T EEE

e e d EEE

e N 0 EEEE
[

s s T O A (o

i

e ore m 7 s Sl it s

o EE g T EETRE

e N] et e s

@ S L N oo
S iz a3 S [y T

=
RS

· Stress testing with client application to emulate daily DML operation tasks
Because the raw data from the PBX has no separators, and the MySQL load data command needs delimiters to elucidate the fields, I wrote a program to add separators based on a properties file that can be edited by the users. This file contains two types of info, 1) a specification of the delimiter character, and 2) column positions for each delimiter.
Apart from loading data, almost all the DMLs are performed by stored procedures which dispatch data in the temporary tables to permanent tables, with a new set of tables generated for each day. I rewrote the current stored procedures from the existing proprietary database language to MySQL's ANSI SQL compliant store procedures. The syntax converting job was not as hard as I thought it would be. After the learning experience of the first rewrite, the job became routine and easy. However, there were dynamic SQLs that created tables and indexes dynamically; it took a while to figure out how to implement them via local variables and reference the variables in the stored procedures. Details regarding this conversion experience will be described in a subsequent blog entry.

Most of the DMLs in the dispatching stored procedure are insert commands. The insert speed of MySQL stored procedures is amazing: It only took 57 minutes to dispatch 66 gigabytes/210 million rows of data (3 days worth of PBX data), and 3 hours 20 minutes to dispatch the data to tables, compared with more than 5 hours to dispatch a single day's data in the existing system; a significant leap!
Summing up the time required for the whole procedure –adding separators, loading the CSVs to dispatch them to permanent tables and create indexes , 2 points stand out:

1. In terms of time required, there is not much difference between creating indexes prior to or after the tables have been loaded with data.

2. It took 15 hours and 20 minutes to go through the entire process dealing with 3 days of PBX data: That’s an average of 5 hours and 7 minutes per day. This is superior to the present regime. Furthermore, the User has indicated that they will be able to add field separators on the PBX side at record generation time: This means it will be possible to shorten our process by 3 hours 20 minutes, thereby needing only 1 hour and 20 minutes. This would be 6 times faster than the existing database.

[image: image3.png]T 5 B) I O

· Stress testing with multi-threaded Java program that issues SQL statements to emulate concurrent database access
As the following table shows, we ran the stress test program with 1 thread, 4 threads, and 8 threads, to simulate 1, 4, and 8 concurrent connections, respectively. The time needed to run the test was 3 hours and 5 minutes (11082 seconds), 11 hours and 14 minutes, and 11 hours and 21 minutes, respectively. The 1- and 4-thread trials had only 1 channel of 1-gigabits/channel connectivity. I added one more channel (2 channels in total) when running the 8-thread test. This should be the reason for the results from the 4-thread and 8-thread tests being about the same (compare the results between 1 thread and 4 threads).
[image: image4.png]12 SaL

Tvesse 3
Mar Fosponse. D)
v Resporce iz}
e/ o 04 153 154
Tots Dueston/n 1087 0% w2
Tt Ouraton e Rur 308 1723 1735
e Gy Ave =] 0] E]
g Qry o) £ £l

[raz]
The following graphs show the maximum response time of each tests are between 420 to 546 seconds, compare with the total time for each runs (more than 6 times leap between 1 thread and 4 threads) there is not much variant.

[image: image5.png]Mex Responsa Ham $112 5L Dursben ¥om 112 S0 Arage Response bom $112 80

When the threads number raise to 12 there are some exceptions showed in the response log, so I think the ceiling of the database should between 8 to 12 threads (I use several PCs to run the stress test program, and the data returned with the SQLs are a few rows, I think the impact from the test tools and network bend width should be small enough to be ignored).

The SQL statements were collect from the database log, it contains SQL statements that hit the database within 10 hours, when I ran the test with 8 threads, it means within 17 hours(testing for 8 threads lasted for 17 hours) the total number of SQL that the database had processed would be 40896 (5112 * 8). I think the test case should be much rigorous than the real situation they have. And when checked the response of the 5112 SQL statements, I found that most of the SQL returned 0 to 1000 rows and response time were less than 3 seconds, but there were 63 SQLs return 497848 rows to 64415, their response time were between 25 to 408 seconds, and most of the large result set SQLs are consecutive statements, this the bottle neck of the test, even I moved those statements to different lines of the SQL command file, they still congested at some where within those statements when the threads number was 4 or 8.

Even though, the user still had concern with the limited number of concurrent connection, they need to know if the connection with large amount of responses would block the rest of the connection with SQLs that return small amount data, so I removed most of the SQLs from the command file, only left 100 commands, all the SQL that grab back large result set were remained, and I ran one testing which repeatedly issued 100 SQLs that return small result set while running the multiple threads testing with large result set at the same time. I got the result as the following table and graph shows, when the number of threads increase, the testing run with small result set finished quickly no matter what the thread number was, the time need to finish the small result set test run are about the same. The response time of large result tests were increased linearily as the following table and graph shows. When the threads number increased from 12 to 28, the max response time increased from 640 seconds to 1138 seconds, and the duration of runs increased from 1 hour 42 minutes to 2 hours 41 minutes.

[image: image6.png]E=3

n B
i o] s
T, I Y
I os| il
EITS— S
mtvmmatc |l vl 2l el

by o S - A

I notice that when a bunch of large result set SQL executed in the database, there are files dumped in the temp directory for temporary tables, I think to competition the limited IO channel could be a of bottle neck of the system, to avoid the exception threw from the database when the number of threads over 20, I add another channel and moved the "tempdir" to the directory of the new channel, it works! The number of concurrent connection raised to 28 and still worked find.

· fail-over test with the MySQL master-slave architecture

I only tested the fail-over by assigning multiple host names in the connection string with MySQL JDBC driver. I ran the stress test program with 2 host names (one for master server, one for slave server) in the host name parameter. It showed when I shutdown the master server while the testing program still running, the threads that generated (or connection that connected) before the shutting down would throw database exception on the console, the threads that generated after the shutting down would be failed-over and queried against the slave server properly. If we need to handle the connection exception further, we can add codes in the exception handler section of the client programs, and fail-over the connection to the 2nd database in the exception section.

· backup the database with LVM snapshot and recover database from the backup sets, incremental backup/recovery also included

MySQL build-in backup solution is very limited, and there is very significant overhead to backup large volume of data, to augment backup with snapshot would be a good idea, there are OS level snapshot solutions such as ZFS for Solaris, and LVM for Redhat, and on the storage level snapshot, there are thin provisioning, iSCSI and NFS which are supported by Sun Open Storage. OS snapshot solutions are easier to integrate into Backup tools such as Zmanda.
I used LVM for snapshot and ZRM to manage the backup, there is a pitfall for to novice - if we want to have disk as backup set storage, apart from the logical volume for the data directory of MySQL, we need to create another logical volume for the backup set storage, otherwise there will be a recursive inserting with the same logical volume, and exhaust the space soon.
ZRM performed well both in full backup and incremental backup, but when I tried to recover the database from the time before the full backup started to the time that incremental backup had been performed, there will be an error of duplicate data been inserted showed in ZRM console, I think it might caused by that the data before the full backup in the binlog been applied. I have not discussed it with Zmanda yet, but I think it could be solved by generate a log switch as the 1st step of full backup, and remove the binlog files that contain data before full backup as the last step.

· test the feasibility for point to failure recovery

With ZRM's nice user interface, it is easy to do the point of failure recovery with full backup and binlog. I think in a production environment, to store binlog files in different volume than data directory would be safer.

Conslusion

MySQL is unique for its plugable storage engine, it let users have more room to tune the database based on the traits of the applications, for applications with few online DML and a lots of query like CDR does, we can use MyISAM for the tables storage engine to take advantage of low overhead, easy maintain/operating (faster indexing and archiving by copy table files to other databases on the OS) merits of the storage engine. On the other hand, when the tables need to support online transaction and maintain data integrity, We can use Innodb as the storage engine, however it may introduce some over head and slower performance as the cost. With newer Innodb, we can be benefited with the improvement by its faster data loading speed (the benchmark shows 5+ times faster, it improved from 12.5 hours to 2.5 hours). I believe with MySQL 5.5 the performance should be improved further, and I am looking forward to apply it in the next benchmark.

